Dutch  |   English

Advances in Machine Learning for Quantitative Analysis

Authored by – Marc Eyrignoux, Specialist - Technology

Quantitative analysis is a very specific domain in Machine Learning and Artificial Intelligence, because of the nature of the data : markets are very competitive, self adaptive, irrational, and interlaced. These constraints do not exist in other domains of time-series analysis, and make them hard to predict. For example, the seasonal variations of the frequentation of Facebook are easy to detect with their open-sourced model « Prophet », and they reproduce each year, with the modularity of the « trend », ie. the current average of the curve. But the variations of the financial markets are not so easy to predict, and financial companies need specific practices and tooling that don’t exist anywhere else in AI.

Therefore, it is interesting to describe them shortly, and link them to the recent research advances of 2018, because that domain is much less open-sourced and published than the usual computer vision and language processing domains covered by the giants of the tech.


Enter your details to download this article for free.

Voer de tekens in die op de afbeelding worden getoond.


Synechron, Inc. en / of zijn dochterondernemingen en groepsmaatschappijen nemen uw privacy serieus. Door uw informatie te verstrekken, meldt u zich aan om informatie te ontvangen over Synechron-services en gerelateerde marketing. Uw persoonlijke gegevens worden beschermd in overeenstemming met het Privacybeleid van Synechron. Door dit formulier in te vullen, geeft u Synechron uw toestemming zodat we u relevante informatie kunnen meedelen via e-mail, telefoon, uitnodigingen en andere digitale meldingen. Als u op enig moment uw toestemming wilt intrekken of uw profiel en voorkeuren wilt bijwerken, kunt u dit doen door hier te klikken of door rechtstreeks contact met ons op te nemen.